JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

(Registered in U. S. Patent Office) (C Copyright, 1958, by the American Chemical Society)

Volume 80

AUGUST 26, 1958

Number 16

PHYSICAL AND INORGANIC CHEMISTRY

Report on Atomic Weights for 1956–1957

By Edward Wichers

RECEIVED APRIL 7, 1958

The International Commission on Atomic Weights met in Paris in July 1957, during the 19th Conference of the International Union of Pure and Applied Chemistry. At this meeting it was agreed that no changes would be recommended in the values for atomic weights approved by the Inter-national Union in 1955.¹ This action was taken in view of the possibility that the efforts being made by the Commission to achieve unification of the chemical scale of atomic weights with the scale of nuclidic masses used by physicists might neces-sitate a general revision of the table within a few years. Changes in atomic weights recommended by the Commission in 1949, 1951, 1953 and 1955^2 have resolved most of the previously existing discrepancies between atomic weights derived from chemical ratios or gas-density measurements and those derived from mass spectrometry or nuclear reaction data.1 Remaining differences are, in almost all instances, within the limits of uncertainty

	Values from physical measurements	1955 value
Arsenic	74,92	74.91
Yttrium	88.91	88.92
Praseodymium	140.91	140.92
Bismuth	208.99	209.00

inherent in the respective techniques. However, there are four anisotopic elements for which values derived from physical measurements are regarded by the Commission as more accurate than the values given in the 1955 table. It will be noted that the differences, as given in the following table, are small.

(2) E. Wichers, *ibid.*, **72**, 1431 (1950); **74**, 2447 (1952); **76**, 2033 (1954); **78**, 3235 (1956).

Nevertheless they should be taken into account in chemical work of the highest accuracy.

In 1949 the Commission adopted the practice of including in the table of atomic weights the mass numbers of selected isotopes of those radioactive elements that are either too short-lived or of too variable isotopic composition to justify the assignment of atomic weights. In the table these mass numbers were bracketed to distinguish them from atomic weights. In 1957 the Commission decided to discontinue this practice on the ground that the kind of information supplied by mass numbers is inconsistent with the primary purpose of a table of atomic weights, which is to provide accurate values of these constants for use in chemical calculations. In keeping with this change of policy the table appended to this report also omits mass numbers for the radioactive elements, whether naturally-occurring or synthetic. Exceptions are made for naturally-occurring uranium and thorium and for certain other elements that are only very slightly radioactive.

The Commission adopted in 1957 the new practice of listing the radioactive elements in an auxiliary table and of indicating for each of these elenents the mass number of a selected isotope. In most instances, the designated isotope is the one of longest known half-life. In the belief that it may be useful to some readers such a table is also appended to this report.

In its report to the International Union³ the Commission adopted still another innovation. That was to provide the tables of atomic weights and of the radioactive elements in two arrangements—in the conventional alphabetical order and in the order of atomic numbers. Because of the obvious advantages of the atomic-number arrangement for certain uses, both arrangements of the

(3) Compt. rend., XIXth Conference, Int. Union Pure Appl. Chem., 139 (1957).

⁽¹⁾ E. Wichers, THIS JOURNAL, 78, 3235 (1956).

Vol. 80

1	Cable of Atomic 1957	c Weights	5	Oxygen	0	8	$\frac{16}{100}$	
		(DEPER)		Palladium	Pd D	46	106.4	
	(Alphabetical	Atomic	Atomic	Phosphorus Platinum	P Dt	15 78	30.975	
	Symbol	no.	wt.	Platinum Plutonium	Pt Pu	78 94	195.09	
Actinium	Ac	89		Polonium	Po	94 84	• • •	
Aluminum	Al	13	26,98	Potassium	ĸ	19	39.100	
Americium	Am	95		Praseodymium	Pr	19 59	140.92	
Antimony	Sb	51	121.76	Promethium	Pm	61		
Argon	Ar	18	39.944	Protactinium	Pa	91	• • •	
Arsenic	As	33	74.91	Radium	Ra	88	• • •	
Astatine	At	85		Radon	Rn	86	• • •	
Barium	Ba	56	137.36	Rhenium	Re	30 75	186,22	
Berkelium	Bk	97		Rhodium	Rh	45	102.91	
Beryllium	Be	4	9.013	Rubidium	Rb	40 37	85.48	
Bismuth	Bi	83	209.00	Ruthenium	Ru	44	101.1	
Boron	В	5	10.82	Samarium	Sm	62	150.35	
Bromine	Br	35	79.916	Scandium	Sc	21	44,96	
Cadmium	Cd	48	112.41	Selenium	Se	$\frac{21}{34}$	78,96	
Calcium	Ca	20	40.08	Silicon	Si	14	28.09	
Californium	Cf	98		Silver	Ag	47	107.880	
Carbon	С	6	12.011	Sodium	Na	11	22,991	
Cerium	Ce	58	140.13	Strontium	Sr	38	87.63	
Cesium	Cs	55	132.91	Sulfur	S	16	$32,006^{a}$	
Chlorine	C1	17	35.457	Tantalum	Ta	73	180.95	
Chromium	Cr	24	52.01	Technetium	Tc	43		
Cobalt	Co	27	58.94	Tellurium	Te	40 52	127.61	
Copper	Cu	29	63.54	Terbium	Tb	65	158.93	
Curium	Cm	96	• • •	Thallium	TI	81	204.39	
Dysprosium	Dy	66	162.51	Thorium	Th	90	232.05	
Einsteinium	Es	99		Thulium	Tm	69	168,94	
Erbium	Er	68	167.27	Tin	Sn	50	118.70	
Europium	Eu	63	152.0	Titanium	Ti	$\frac{100}{22}$	47.90	
Fermium	Fm	100		Tungsten	w	7 4	183.86	
Fluorine	\mathbf{F}	9	19.00	Uranium	U	92	238.07	
Francium	Fr	87		Vanadium	v	23	50.95	
Gadolinium	Gd	64	157.26	Xenon	хe	54	131.30	
Gallium	Ga	31	69.72	Ytterbium.	Yb	70	173.04	
Germanium	Ge	32	72.60	Yttrium	Ŷ	39	88.92	
Gold	Au	79	197.0	Zinc	Zn	30	65.38	
Hafnium	Hf	72	178.50	Zirconium	Zr	40	91.22	
Helium	He	2	4.003	^a Because of natural				
Holmium	Ho	67	164.94	of the isotopes of sulfu	r, the atom	mic weigh	t of this element	
Hydrogen	н	1	1.0080	has a range of ± 0.003				
Indium	In	49	114.82	table of atomic weig	hts are a	nnondod	to this report	
Iodine	I	53	126.91					
Iridium	Ir	77	192.2	The alphabetical radioactive element			the table of	
Iron	Fe	26	55.85				International	
Krypton	Kr	36	83.80	During the 1957 Conference of the International Union the Commission on Inorganic Nomenclature				
Lanthanum	La	57	138.92	adopted changes in the symbols of argon (Ar) and				
Lead	Pb	82	207.21	inendelevium (Md)				
Lithium	Li	3	6.940	nized the discovery				
Lutetium	Lu	71	174.99	102 and adopted the				
Magnesium	Mg	12	24.32	coverers. They are				
Manganese	Mn	25	54.94	fermium (Fm) and			stemum (25),	
Mendelevium		101		Unification of th			ommission at	
Mercury	Hg	80	200.61	its meeting in Pari				
Molybdenum		-42	95.95	by chemists and p				
Neodymium	Nd	60	144.27	of achieving a unif				
Neon	Ne	10	20.183	the problem see the				
Neptunium	Np	93	20.100	cal Society for 195				
Nickel	Ni	28^{-10}	58.71	ported of a favorab				
Niobium	Nb	41	92.91	of a scale based on 1				
Nitrogen	N	7	14.008	gen-1 or 4 as the ma				
Nobelium	No	102		opinion favorable to				
Osmium	Os	76	190.2	signed mass of fluor				
	-			0	-,			

57

Lanthanum

La

138.92

	TABLE OF ATO	MIC WEIGHTS		58	Cerium	Ce	140.13
	195	7		59	Praseodymium	Pr	140.92
	(Order of Ato	MIC NUMBER)		60	Neodymium	Nd	144.27
Atomic no.	Name	Symbol	Atomic wt.	61	Promethium	\mathbf{Pm}	
1	Hydrogen	H	1.0080	62	Samarium	Sm	150.35
$\frac{1}{2}$	Helium	He	4.003	63	Europium	Eu	152.0
2	Henum	пе	4,005	64	Gadolinium	Gd	157.26
	T • / 1 •	÷.	6.040	65	Terbium	Tb	158.93
3	Lithium	Li	6.940	66	Dysprosium	Dy	162.51
4	Beryllium	Be	9.013	67	Holmium	Ho	164.94
5	Boron	В	10.82	68	Erbium	Er	167.27
6	Carbon	С	12.001	69	Thulium	Tm	168.94
7	Nitrogen	N	14.008	70	Ytterbium	Yb	173.04
8	Oxygen	0	16	70 71	Lutetium		173.04
9	Fluorine	F	$\overline{19.00}$			Lu	
10	Neon	Ne	20,183	72	Hafnium	Hf	178.50
	rteon		201200	73	Tantalum	Ta	1 8 0.95
11	Sodium	Na	22.991	74	Tungsten	W	183.86
11 12	Magnesium	Mg	24.32	75	Rhenium	Re	186.22
12	Aluminum	Al	24.32	76	Osmium	Os	190.2
		Si	28.09	77	Iridium	Ir	192.2
14	Silicon			78	Platinum	Pt	195.09
15	Phosphorus	Р	30.975	79	Gold	Au	197.0
16	Sulfur	S	32.066ª	80	Mercury	Hg	200.61
17	Chlorine	C1	35.457	81	Thallium	ΤĨ	204.39
18	Argon	Ar	39.944	82	Lead	Pb	207.21
				83	Bismuth	Bi	209,00
19	Potassium	K.	39.100	84	Polonium	Po	200.00
20	Calcium	Ca	40.08	85	Astatine	At	
21	Scandium	Sc	44.96	86	Radon	Rn	• • •
22	Titanium	Ti	47.90	80	Radon	RI	• • •
23	Vanadium	v	50.95				
24	Chromium	Cr	52.01	87	Francium	Fr	• • •
25	Manganese	Mn	54.95	88	Radium	Ra	• • •
$\frac{26}{26}$	Iron	Fe	55.85	89	Actinium	Ac	• • •
20 27	Cobalt	Co	58,94	90	Thorium	\mathbf{Th}	232.05
28	Nickel	Ni	58.71	91	Protactinium	Pa	• • •
28 29	Copper	Cu	63.54	92	Uranium	U	238.07
29 30	Zinc	Zn	65.38	93	Neptunium	$\mathbf{N}\mathbf{p}$	
			69.72	94	Plutonium	Pu	
31	Gallium	Ga		95	Americium	Am	
32	Germanium	Ge	72.60	96	Curium	Cm	• • •
33	Arsenic	As	74.91	97	Berkelium	Bk	
34	Selenium	Se	78.96	98	Californium	Cf	
35	Bromine	Br	79.916	99	Einsteinium	Es	
36	Krypton	Kr	83.80	100	Fermium	Fm	
				100	Mendelevium	Md	• • •
37	Rubidium	Rb	85.48	101	Nobelium	No	• • •
38	Strontium	Sr	87.63				• • •
39	Yttrium	Y	88.92	^a Because	of natural variation	s in the rela	tive abundance
40	Zirconium	Zr	91.22	has a range	pes of sulfur, the atc of ± 0.003	mic weight	of this element
41	Niobium	Nb	92.91	rate a range	or ±0.000.		
42	Molybdenum	Mo	95.95	verv stron	g opposition to su	ch a scale.	especially on
43	Technetium	Tc			physicists who a		
44	Ruthenium	Ru	101.1		ass measurements		
45	Rhodium	\mathbf{Rh}	102.91		into account, as w		
46	Palladium	\mathbf{Pd}	106.4		t of physicists ge		
47	Silver	Ag	107.880				
48	Cadmium	Cd	112.41		nysical scale, the		
49	Indium	In	114.82		al report, ³ that f		
50	Tin	Sn	118.70		should be restric		
51	Antimony	Sb	121.76		other of the two		
52	Tellurium	Te	127.61		cale were to be the		
53	Iodine	I	127.01 126.91	be modifie	ed to eliminate t	he existin	ig ambiguity
54	Xenon	Xe	131.30		m the natural va		
FO	21CHOIL	110	101.00		e of the oxygen is		
55	Cesium	Cs	132.91		ied, for example,		
56	Barium	Ba	137.36		, which would be a		

oxygen-16, which would be assigned a relative mass of 15.9956.

THE RADIOACTIVE ELEMENTS^a 1957

(Order of Atomic Number)							
At.		Sym-	Iso-			Disinte-	
no.	Name	hol	tope	Half-lif	e	gration	
43	Technetium	Tc	99*	$2.2 imes10^5$	yr.	β-	
61	Promethium	Pm	147*	2.6	yr.	β-	
84	Polonium	\mathbf{Po}	210*	140	days	α	
85	Astatine	At	210	8.3	yr.	α	
86	Radon	Rn	222	3.8	days	α	
87	Francium	Fr	223	21	min,	β-	
88	Radium	Ra	226	1622	yr.	α	
89	Actinium	Ac	227	22	yr.	β-, α	
90	Thorium	\mathbf{Th}	232	1.4×10^{10}	yr.	α	
91	Protactinium	\mathbf{Pa}	231	$3.4 imes 10^4$	yr.	α	
92	Uranium	U	238	$4.5 imes 10^9$	yr.	α	
93	Neptunium	Np	237	$2.2 imes10^6$	yr.	α	
94	Plutonium	Pu	242	$3.8 imes10^{s}$	yr.	α	
95	Americium	Am	243	$7.6 imes10^{3}$	yr.	α	
9 6	Curium	Ст	247	4×10^7	yr.	α	
97	Berkelium	Bk	249*	290	days	β-	
98	Californium	Cf	251*	660	days	β-	
99	Einsteinium	\mathbf{Es}	254	280	days	α	
100	Fermium	Fm	253	4.5	days	α	
101	Mendelevium	$\mathbf{M}\mathbf{d}$	256	0.5	hr.	Spontaneous	
						fission	

^a This table lists selected isotopes of the chemical elements, whether occurring in nature or known only through synthesis, that are commonly classed as radioactive. The listed isotope may be either the one of longest known half-life or, for those marked with an asterisk, a better known one.

ca, 10 min.

No

After the Commission had submitted its formal report there was an extensive exchange of correspondence, both among members of the Commission and among others interested in the problem. This correspondence led to the consideration of other alternatives for unification. Of these a scale based on the exact number 12 as the assigned mass of carbon-12 appears to offer the best promise of acceptance. It was suggested independently by A. Ölander and A. O. C. Nier and has been strongly supported by J. Mattauch. Since the mass of carbon-12 on the present chemical scale is only 42 parts in one million less than 12, the adoption of the "carbon-12 scale" would result in changing presently accepted atomic and molecular weights by an amount too small to be significant for most uses of these data. This argument was put forward also for the fluorine-19 scale, which would require a change of the same magnitude, but in the opposite direction. Both Nier and Mattauch recognize the importance of carbon-12 in mass spectrometry, in which it has been the most important secondary standard for the determination of nuclidic masses. Mattauch prepared a discussion of the carbon-12 scale and other alternatives that would have the same advantage of requiring only small changes in numbers based on the present chemical scale. This discussion was published as an addendum to the report of the International Commission.³ Because it cannot well be paraphrased or condensed without loss of meaning, Mattauch's discussion is reproduced in full at the end of the present report.

To chemists a scale for which an isotope of carbon is the reference species may well seem a strange choice. Even the element carbon, in its natural mixture of isotopes, has never been attractive for stoichiometric comparisons. In fact, the atomic weight of carbon was one of the more elusive of such constants when only chemical ratios and gasdensity measurements were available for its determination. Furthermore, carbon-12 of sufficient isotopic purity for determinations of chemical ratios or comparisons of gas-densities would be almost unobtainable. However, such objections can be countered with the argument that the mass of carbon-12 has been related, by physical measurements of more than adequate accuracy, to the masses of other species useful for chemical ratios.

In the opinion of this writer a unified scale based on 12 as the assigned exact mass of carbon-12 is the only one that physicists are likely to be willing to accept in place of the present physical scale. To many of them the alternative of adopting a (defined) equivalent of the chemical scale, with the resulting non-integral value (15.9956) for the mass of oxygen-16, is unacceptable. Although this attitude may not be logical it is nevertheless understandable.

As the result of his analysis of the problem, Mattauch³ has come to the conclusion that a scale based on carbon-12 is inherently better than a scale based on oxygen-16. It remains to be seen whether physicists generally will concede that Mattauch's argument carries enough force to justify abandoning the present physical scale. However, chemists have shown a strong opposition to unification on the basis of the present physical scale. The opposition is based primarily on the confusion resulting from a change of nearly 3 parts in 10,000 in all molecular weights and molar quantities and the enormous task of revising published data.⁴

It thus appears unlikely that unification can be accomplished by retaining either of the existing scales. However, there is a good possibility that the carbon-12 scale will prove an acceptable replacement for both scales now in use. A decision to adopt the carbon-12 scale should not be made unless it can be expected to displace both of the oxygen scales within a reasonable time. To add a third scale would only cause more confusion. Further, the decision should not be made before there has been sufficient time for full consideration of the question and there is general confidence in the advantages to be gained from the change. If these conditions can be met, the change will be highly desirable.

(4) In a private communication K. S. Pitzer has expressed this objection in the following language:

"I would like to emphasize that it will not be feasible to abandon the present chemical scale unless the change in numerical values is limited to the level of a few thousandths of a per cent. I suppose there are hundreds of millions of recorded numerical entries in the chemical handbooks and literature which are based on the chemist's mole. Many of these are of relatively low accuracy, but I would estimate there are about a million recorded values which are given to a precision of a hundredth of a per cent. or thereabouts and which would have to be revised if we were to shift to the present physicist's scale of oxygen- $16 \Rightarrow 16$. The labor and confusion involved in a change of this magnitude is in my estimate much more serious than the inconvenience of retaining two parallel scales indefinitely."

WASHINGTON 25, D. C.

102 Nobelium